

Multiple Turbo Codes
 D. Divsalar and F. Pollara 1

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract:

In this paper, we introduce multiple turbo codes and
a suitable decoder structure derived from an approximation to the
maximum a posteriori probability (MAP) decision rule, which is
substantially different from the decoder for two-code-based en-
coders. We developed new rate 1/3 and 2/3 constituent codes
to be used in the turbo encoder structure. These codes, for 2
to 32 states, are designed by using primitive polynomials. The
resulting turbo codes have rates

b/n

,

b

= 1

,

2 and

n

= 3

,

4, and
include random interleavers for better asymptotic performance.
A rate 2/4 code with 16QAM modulation was used to realize a
turbo trellis coded modulation (TTCM) scheme at 2 bit/sec/Hz
throughput, whose performance is within 1 dB from the Shannon
limit at BER=10

−

5

.

I. Introduction

Coding theorists have traditionally attacked the problem of de-
signing good codes by developing codes with a lot of structure,
which lends itself to feasible decoders, although coding theory
suggests that codes chosen “at random” should perform well if
their block size is large enough. The challenge to find practical
decoders for “almost” random, large codes has not been seriously
considered until recently. Perhaps the most exciting and poten-
tially important development in coding theory in recent years has
been the dramatic announcement of “turbo codes” by Berrou et
al. in 1993 [7]. The announced performance of these codes was
so good that the initial reaction of the coding establishment was
deep skepticism, but recently researchers around the world have
been able to reproduce those results [15, 18, 9]. The introduc-
tion of turbo codes has opened a whole new way of looking at the
problem of constructing good codes [5] and decoding them with
low complexity [7, 2].

These codes achieve near-Shannon-limit error correction per-
formance with relatively simple component codes and large inter-
leavers. A required

E

b

/N

o

of 0.7 dB was reported for a bit error
rate (BER) of 10

−

5

for a rate 1/2 turbo code [7].
The purpose of this paper is to: (1) Design the best component

codes for turbo codes of various rates; (2) Describe a suitable trel-
lis termination rule; (3) Design pseudo-random interleavers; (4)
Design turbo codes with multiple component codes; (5) Design
an iterative decoding method for multiple turbo codes by approx-
imating the optimum bit decision rule. (6) Design of low-rate
turbo codes for power limited channels (deep-space communica-
tions) and CDMA; (7) Design of high rate turbo codes for band-
width limited channels (Turbo trellis coded modulation); (8) Give
examples and simulation results.

II. Parallel Concatenation of Convolutional

Codes

The codes considered in this paper consist of the parallel con-
catenation of multiple convolutional codes with random inter-
leavers (permutations) at the input of each encoder. This ex-
tends the original results on turbo codes reported in [7], which
considered turbo codes formed from just two constituent codes
and overall rate 1/2.

1

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under con-
tract with the National Aeronautics and Space Administration.

u
• x0

x1

x2

x3

π2

D D• •

•

ENCODER 1

D D• •

ENCODER 2

D D• •

ENCODER 3

•

•

•

•

u3

u2

π3

π1
u1

Figure 1: Example of encoder with three codes

Figure 1 illustrates a particular example that will be used in this
paper to verify the performance of these codes. The encoder con-
tains three recursive binary convolutional encoders, with

m

1

,

m

2

and

m

3

memory cells, respectively. In general, the three compo-
nent encoders may not be identical and may not have identical
code rates. The first component encoder operates directly (or
through

π

1

) on the information bit sequence

u

= (

u

1

,

· · ·

, u

N

) of
length

N

, producing the two output sequences

x

0

and

x

1

. The
second component encoder operates on a reordered sequence of
information bits,

u

2

, produced by an interleaver,

π

2

, of length

N

, and outputs the sequence

x

2

. Similarly, subsequent compo-
nent encoders operate on a reordered sequence of information
bits,

u

j

, produced by interleaver

π

j

, and output the sequence

x

j

. The interleaver is a pseudorandom block scrambler defined
by a permutation of

N

elements with no repetitions: A complete
block is read into the the interleaver and read out in a specified
(fixed) random order. The same interleaver is used repeatedly
for all subsequent blocks. Figure 1 shows an example where a
rate

r

= 1

/n

= 1

/

4 code is generated by three component codes
with

m

1

=

m

2

=

m

3 = m = 2, producing the outputs x0 = u,
x1 = u · g1/g0, x2 = u2 · g1/g0, and x3 = u3 · g1/g0 (here π1 is
assumed to be an identity, i.e., no permutation), where the gen-
erator polynomials g0 and g1 have octal representation (7)octal
and (5)octal, respectively. Note that various code rates can be
obtained by proper puncturing of x1, x2, x3, and even x0 if the
decoder works (for an example, see Section VIII).

We use the encoder in Fig. 1 to generate an (n(N +m), N)
block code, where the m tail bits of code 2 and code 3 are not
transmitted. Since the component encoders are recursive, it is
not sufficient to set the last m information bits to zero in order
to drive the encoder to the all-zero state, i.e., to terminate the
trellis. The termination (tail) sequence depends on the state of
each component encoder after N bits, which makes it impossible
to terminate all component encoders with m predetermined tail

bits. This issue, which had not been resolved in the original turbo
code implementation, can be dealt with by applying the simple
method described in [9], which is valid for any number of compo-
nent codes. A more complicated method is described in [17].

The design of the constituent convolutional codes, which are
not necessarily optimum convolutional codes, was originally re-
ported in [5] for rate 1

/n

codes. In this paper we extend the
results to rate

b/n

codes. It was suggested in [2] that good ran-
dom codes are obtained if

g

a

is a primitive polynomial (without
proof). This suggestion was used in [5] to obtain “good” rate 1/2
constituent codes, and, in this paper, to obtain “good” rate 1/3
and 2/3 constituent codes. A more precise definition of “good”
codes is given in Sections III and V.

III. Random Interleavers

The challenge in designing good turbo codes is to find the pairing
of codewords from each individual encoder, induced by a par-
ticular set of interleavers. Intuitively, we would like to avoid
pairing low-weight codewords from one encoder with low-weight
words from the other encoders. In this section we examine the
effects of random interleavers on the low-weight input sequences
which may produce low output codeword weights. The input
sequences with a single “1” will appear again in the other en-
coders, for any choice of interleavers. This motivates the use
of recursive encoders, since the output weight due to weight-1
input sequences

u

= (

. . .

001000

. . .

) is large. Now we briefly ex-
amine the issue of whether one or more random interleavers can
avoid matching small separations between the 1’s of a weight-
2 data sequence with equally small separations between the 1’s
of its permuted version(s). Consider, for example, a particular
weight-2 data sequence (

· · ·

001001000

· · ·

), which corresponds to
a low-weight codeword in each of the encoders of Fig. 1. If we
randomly select an interleaver of size

N

, the probability that this
sequence will be permuted into another sequence of the same form
is roughly 2

/N

(assuming that

N

is large and ignoring minor edge
effects). The probability that such an unfortunate pairing hap-
pens for at least one possible position of the original sequence
(

· · ·

001001000

· · ·

) within the block size of

N

is approximately
1

−

(1

−

2

/N

)

N

≈

1

−

e

−

2

. This implies that the minimum distance
of a two-code turbo code constructed with a random permutation
is not likely to be much higher than the encoded weight of such
an unpermuted weight-2 data sequence. By contrast, if we use
three codes and two different interleavers, the probability that
a particular sequence (

· · ·

001001000

· · ·

) will be reproduced by
both interleavers is only (2

/N

)

2

. Now the probability of finding
such an unfortunate data sequence somewhere within the block

of size

N

is roughly 1

−

[

1

−

(2

/N

)

2

]

N

≈

4

/N

. Thus, it is prob-
able that a three-code turbo code using two random interleavers
will see an increase in its minimum distance beyond the encoded
weight of an unpermuted weight-2 data sequence. This argument
can be extended to account for other weight-2 data sequences
that may also produce low-weight codewords. For comparison,
let us consider a weight-3 data sequence such as (

· · ·

0011100

· · ·

).
The probability that this sequence is reproduced with one ran-
dom interleaver is roughly 6

/N

2

, and the probability that some
sequence of the form (

· · ·

0011100

· · ·) is paired with another of
the same form is 1 − (1 − 6/N2)N ≈ 6/N . Thus, for large block
sizes, the bad weight-3 data sequences have a small probability
of being matched with bad weight-3 permuted data sequences,
even in a two-code system. For a turbo code using three codes
and two random interleavers, this probability is even smaller,

1 −
[
1− (6/N2)2

]N ≈ 36/N3. This implies that the minimum

distance codeword of the turbo code in Fig. 1 is more likely to re-
sult from a weight-2 data sequence of the form (· · · 001001000 · · ·)
than from the weight-3 sequence (· · · 0011100 · · ·). Higher weight
sequences have an even smaller probability of reproducing them-
selves after being passed through the random interleavers.

For a turbo code using q codes and q−1 interleavers, the prob-
ability that a weight-n data sequence will be reproduced some-
where within the block by all q − 1 permutations is of the form

1 −
[
1− (β/Nn−1)q−1

]N
, where β is a number that depends on

the weight-n data sequence but does not increase with block size
N . For large N , this probability is proportional to (1/N)nq−n−q,
which falls off rapidly with N , when n and q are greater than
two. Furthermore, the symmetry of this expression indicates that
increasing either the weight of the data sequence n or the number
of codes q has roughly the same effect on lowering this probability.

In summary, from the above arguments, we conclude that
weight-2 data sequences are an important factor in the design
of the constituent codes, and that higher weight sequences have
successively decreasing importance [12, 11]. Also, increasing the
number of codes and, correspondingly, the number of interleavers,
makes it more and more likely that the bad input sequences will
be broken up by one or more of the permutations.

The overall minimum distance is not the most important char-
acteristic of the turbo code if it is due to weight-n data sequences
with n > 2. The performance of turbo codes with random in-
terleavers can be obtained by transfer function bounding tech-
niques [6, 4, 12, 13].

IV. Design of Partially Random Interleavers

Interleavers should be capable of spreading low-weight input se-
quences so that the resulting codeword has high weight. In order
to break low-weight sequences, random interleavers are desirable.

We have designed semirandom permutations (interleavers) by
generating random integers i, 1 ≤ i ≤ N , without replacement.
We define an “S-random” permutation as follows: Each randomly
selected integer is compared to S previously selected integers. If
the current selection is equal to any S previous selections within a
distance of ±S, then the current selection is rejected. This process
is repeated until all N integers are selected. The searching time
for this algorithm increases with S and is not guaranteed to finish
successfully. However, we have observed that choosing S <

√
N/2

usually produces a solution in a reasonable time. Note that for
S = 1, we have a purely random interleaver.

V. Design of Constituent Encoders

As discussed in Section III, maximizing the weight of output code-
words corresponding to weight-2 data sequences gives the best
BER performance for moderate bit SNR as the random inter-
leaver size N gets large. In this region the dominant term in the
expression for bit error probability of turbo codes is

Pb ≈
β

Nq−1
Q

√√√√2r
Eb
No

(

q∑
j=1

dpj,2 + 2)

where dpj,2 is the minimum parity-weight (weight due to parity

checks only) of the codewords at the output of the jth constituent
code due to weight-2 data sequences, and β is a constant indepen-
dent of N . Define dj,2 = dpj,2 + 2 as the minimum output weight
including parity and systematic bits.

Theorem

. For any

r

=

b
b

+1

recursive systematic convolutional
encoder with generator matrix

G

=

 h 1 (D)

h

0

(

D

)

h

2

(

D

)

h

0

(

D

)

I

b

×

b

.

.

h

b

(

D

)

h

0

(

D

)

where

I

b

×

b

is a

b

×

b

identity matrix, deg[

h

i

(

D

)]

≤

m

j

,

h

i

(

D

)

6

=

h

0

(

D

),

i = 1, 2, . . . , b and h0(D) is a primitive polynomial of
degree mj , the following upper bound holds

dpj,2 ≤ b
2mj−1

b
c+ 2

Proof. In the state diagram of any recursive systematic convolu-
tional encoder with generator matrix G, there exists at least two
non-overlapping loops corresponding to all-zero input sequences.
If h0(D) is a primitive polynomial there are two loops: one corre-
sponding to zero-input, zero-output sequences with branch length
one, and the other corresponding to zero-input but non-zero-
output sequences with branch length 2mj −1, which is the period
of maximal length (ML) linear feedback shift registers (FSR) with
degree mj . The parity codeword weight of this loop is 2mj−1 due
to the balance property of ML sequences. This weight depends
only on the degree of the primitive polynomial and is indepen-
dent of hi(D) due to the invariance to initial conditions of ML
FSR sequences. In general, the output of the encoder is a linear
function of its input and current state. So, for any output we may
consider, provided it depends at least on one component of the
state and it is not h0(D), then the weight of a zero input loop is
2mj−1, by the shift-and-add property of ML FSRs.

+ + + +D D D

h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

x0

u2

u1
x1

x2

+

+

+

+

+

+

•
••

••
•

A

A
B

B

a20 a21 a22
a10 a11 a12

Figure 2: Canonical representation of a rate b+1
b encoder

(b = 2, mj = 3).

Consider the canonical representation of a rate b + 1/b en-
coder as shown in Fig. 2, when the switch is in position A. Let
Sk(D) be the state of the encoder at time k with coefficients
Sk0 , S

k
1 , . . . , S

k
mj−1, where the output of the encoder at time k is

X = Sk−1
mj−1 +

b∑
i=1

uki hi,mj (1)

The state transition for input uk1 , . . . , u
k
b at time k is given by

Sk(D) =

[
b∑
i=1

uki hi(D) +DSk−1(D)

]
mod h0(D) (2)

From the all-zero state we can enter the zero-input loop with
non-zero input symbols u1, . . . , ub at state

S1(D) =

b∑
i=1

uihi(D) mod h0(D) (3)

From the same non-zero input symbol we leave exactly at state
S2

mj−1(D) back to the all zero state where S2
mj−1(D) satisfies

S1(D) = DS2
mj−1(D) mod h0(D) (4)

i.e., S2
mj−1(D) is the “predecessor” to state S1(D) in the zero-

input loop. If the most significant bit of the predecessor state is

zero, i.e., S2
mj−1
mj−1 = 0, then the branch output for the transition

from S2
mj−1(D) to S1(D) is zero for zero input symbol. Now

consider any weight 1 input symbol, i.e., uj = 1 for j = i and
uj = 0 for j 6= i, j = 1, 2, . . . , b. The question is: what are the
conditions on the coefficients hi(D) such that, if we enter with
weight 1 input symbol into the zero-input loop at state S1(D),

the most significant bit of the “predecessor” state S2
mj−1(D) be

zero. Using eqs. 3 and 4 we can establish that

hi0 + hi,mj = 0 (5)

Obviously, when we enter the zero-input loop from the all-zero
state and when we leave this loop to go back to the all-zero state
we would like the parity output to be equal to 1. From eq. 1 and 5
we require

hi0 = 1 hi,mj = 1 (6)

With this condition we can enter the zero-input loop with a
weight-1 symbol at state S1(D) and then leave this loop from

state S2
mj−1(D) back to the all-zero state, for the same weight-

1 input. The parity-weight of the codeword corresponding to
weight-2 data sequences is then 2mj−1 + 2, where the first term
is the weight of the zero-input loop and the second term is due
to the parity bit appearing when entering and leaving the loop.
If b = 1 the proof is complete and the condition to achieve the
upper bound is given by 6. For b = 2 we may enter the zero-input
loop with u = 10 at state S1(D) and leave the loop to the zero
state with u = 01 at some state Sj(D). If we can choose Sj(D)
such that the output weight of the zero input loop from S1(D) to
Sj(D) is exactly 2mj−1/2 then the output weight of the zero-input

loop from Sj+1(D) to S2mj −1(D) is exactly 2mj−1/2, and the min-
imum weight of codewords corresponding to some weight-2 data
sequences is

2mj−1

2
+ 2

In general, for any b if we extend the procedure for b = 2, the
minimum weight of the codewords corresponding to weight-2 data
sequences is

b2
mj−1

b
c+ 2 (7)

where bxc is the largest integer less than or equal to x. Clearly this
is the best achievable weight for the minimum weight codeword
corresponding to weight-2 data sequences. This upper bound can
be achieved if the maximum run length of 1’s (mj) in the zero-

input loop does not exceed b 2
mj−1

b
c, where b is a power of 2.

The run property of ML FSRs can help us in designing codes
achieving this upper bound. Consider only runs of 1’s with length
l, for 0 < l < mj − 1, then there are 2mj−2−l runs of length l, no
runs of length mj − 1, and only one run of length mj . For a more

detailed proof and conditions when

b

is not a power of 2 see [14]
2

 Corollary . For any r = b/n recursive systematic convolutional
code with

b

inputs,

b

systematic outputs and

n
 −

b

parity output
bits using a primitive feedback generator, we have

d

p
j,

2

≤

(

n

−

b

)

[

2

m

j

−

1

b

+ 2

]

(8)

Proof

. A trivial solution is to repeat the parity output of a rate

b
b

+1

code. Then if this code achieves the upper bound so does a
rate

b/n

code. 2

There is an advantage in using

b >

1 since the
bound in eq.(8) for rate

b/bn

codes is larger than the bound for
rate 1

/n

codes.

Best Rate 2/3 Constituent Codes

. We obtained the best rate
2/3 codes as shown in Table 1, where

d

p
j,

2

is simply denoted by

d

p

2

and

d

2

=

d

p

2

+ 2. Minimum weight codewords corresponding to
weight-3 data sequences are denoted by

d

3

,

d

min

is the minimum
distance of the code, and

k

=

m

j

+ 1 in all tables. By “best” we
only mean codes with large

d

2

for a given

m

j

.

Best Rate 4/5, 16-State Constituent Codes

. All three codes
found have four common generators

h

0 = 23, h1 = 35, h2 = 31,
h3 = 37, plus an additional generator h4 = 27, or h4 = 21, or
h4 = 33, all yielding d2 = 5 and dmin = 4.
Trellis Termination for b/n codes with canonical realiza-
tion. Trellis termination is performed (for b = 2) by setting
the switch shown in Fig. 2 in position B. The tap coefficients
ai0, . . . , ai,mj−1 for i = 1, 2, . . . , b can be obtained by repeated
use of eq. (2), and by solving the resulting equations. The trellis
can be terminated in state zero with at least mj/b and at most
mj clock cycles (see [14] for details). When Fig. 3 is extended to
multiple input bits (b parallel feedback shift registers), a switch
should be used for each input bit.
Best Punctured Rate 1/2 Constituent Codes. A rate 2/3
constituent code can be derived by puncturing the parity bit of
a rate 1/2 recursive systematic convolutional code. If the parity
puncturing pattern is P = [10] or P = [01] then we show in [14]
that it is impossible to achieve the upper bound on d2 = dp2 +2 for
rate 2/3 codes. (A puncturing pattern P has zeros where symbols
are removed. The best rate 1/2 constituent codes with puncturing
pattern P = [10] are given in Table 2.
Best Rate 1/3 Constituent Codes. For rate 1/n codes the
upper bound in eq. 7 for b = 1 reduces to

dpj,2 ≤ (n− 1)(2mj−1 + 2)

This upper bound was originally derived in [5], where the best rate
1/2 constituent codes meeting the bound were obtained. Here we
present a simple proof based on our previous general result on
rate b/n codes. Then we obtain the best rate 1/3 codes without
parity repetition. In [14] we illustrate how parity repetition is
undesirable for codes to be decoded with turbo decoders.

Consider a rate 1/n code shown in Fig. 3. In this figure g0(D)
is assumed to be a primitive polynomial. As discussed above,
the output weight of the zero-input loop per parity bit is 2mj−1

independent of the choice of gi(D), i = 1, 2, . . . , n − 1, provided
that gi(D) 6= 0 and that gi(D) 6= g0(D), by the shift-and-add
and balance properties of ML FSRs. If S(D) represents the
state polynomial, then we can enter the zero input loop only at
state S1(D) = 1 and leave the loop to the all-zero state at state

S2
mj−1(D) = Dmj−1. The ith parity output on the transition

S1(D)→ S2
mj−1(D) with zero input bit is

xi = gi0 + gi,mj

+

+

+

+

D D D

+

+ +

+

+

g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

x0

x1

x2

u •
•A•
B

Figure 3: Rate 1/n code.

k Code Generator d2 d3 dmin
3 h0 = 7 h1 = 3 h2 = 5 4 3 3
4 h0 = 13 h1 = 15 h2 = 17 5 4 4
5 h0 = 23 h1 = 35 h2 = 27 8 5 5

h0 = 23 h1 = 35 h2 = 33 8 5 5
6 h0 = 45 h1 = 43 h2 = 61 12 6 6

Table 1: Best rate 2/3 constituent codes.

k Code Generator d2 d3 dmin
3 g0 = 7 g1 = 5 4 3 3
4 g0 = 13 g1 = 15 5 4 4
5 g0 = 23 g1 = 37 7 4 4

g0 = 23 g1 = 31 7 4 4
g0 = 23 g1 = 33 6 5 5
g0 = 23 g1 = 35 6 4 4
g0 = 23 g1 = 27 6 4 4

Table 2: Best rate 1/2 punctured constituent codes.

k Code Generator d2 d3 dmin
2 g0 = 3 g1 = 2 g2 = 1 4 ∞ 4
3 g0 = 7 g1 = 5 g2 = 3 8 7 7
4 g0 = 13 g1 = 17 g2 = 15 14 10 10
5 g0 = 23 g1 = 33 g2 = 37 22 12 10

g0 = 23 g1 = 35 g2 = 27 22 11 11

Table 3: Best rate 1/3 constituent codes (without parity
repetition).

If

g

i

0

= 1 and

g

i,m

j

= 1 for

i

= 1

, . . . , n

−

1, the output weight
of the encoder for that transition is zero. The output weight
when entering and leaving the zero-input loop is (n − 1) for each
case. In addition, the output weight of the zero-input loop will
be (

n

−

1)2

m

j

−

1

. Thus we can achieve the upper bound.

We obtained the best rate 1/3 codes without parity repetition
as shown in Table 3, where

d

2

=

d

p

2

+ 2 represents the minimum
output weight given by weight-2 data sequences. The best rate
1/2 constituent codes are given by

g

0

and

g

1

in this table, as was
also reported in [5].

VI. Turbo Decoding for Multiple Codes

In this section, we consider decoding algorithms for multiple-code
turbo codes. In general, the advantage of using three or more con-
stituent codes is that the corresponding two or more interleavers
have a better chance to break sequences that were not broken
by another interleaver. The disadvantage is that, for an overall
desired code rate, each code must be punctured more, resulting
in weaker constituent codes. Also shorter constraint length codes
should be used for successful operation of the turbo decoder. In
our experiments, we have used randomly selected interleavers and
S-random interleavers.

Let

u

k

be a binary random variable taking values in

{

0

,

1

}

,
representing the sequence of information bits

u

= (

u

1

,

· · ·

, u

N

).
The MAP algorithm [1] provides the log likelihood ratio

L

k

, given
the received symbols

y

:

L

k

= log

P

(

u

k

=1

|

y

)

P

(

u

k

=0|y)

= log

∑
u:uk=1

P (y|u)
∏

j 6=k
P (uj)∑

u:uk=0
P (y|u)

∏
j 6=k

P (uj)
+ log P (uk=1)

P (uk=0)
(9)

ENCODER 1

ρ

ρ

n1

y0=ρ (2u-1) + n0

y1=ρ (2x1-1) + n1
u

n0

x

Figure 4: Channel Model

For efficient computation of Eq. (9) when the a priori probabilities
P (uj) are nonuniform, the modified MAP algorithm in [15] is
simpler to use than the version considered in [7]. Therefore, in
this paper, we use the modified MAP algorithm of [15].

If the rate b/n constituent code is not equivalent to a punc-
tured rate 1/n′ code or if turbo trellis coded modulation is used,
we can first use the symbol MAP algorithm [1] to compute the
log-likelihood ratio of a symbol u = u1, u2, . . . , ub given the ob-
servation y as

λ(u) = log
P (u|y)

P (0|y)

where 0 corresponds to the all-zero symbol. Then we obtain the
log-likelihood ratios of the jth bit within the symbol by

L(uj) = log

∑
u:uj=1

eλ(u)∑
u:uj=0

eλ(u)

In this way the turbo decoder operates on bits and bit, rather
than symbol, interleaving is used.

The channel model is shown in Fig. 4, where the n0k’s and
the n1k’s are independent identically distributed (i.i.d.) zero-
mean Gaussian random variables with unit variance, and ρ =√

2rEb/No is the SNR. The same model is used for each encoder.
To explain the basic decoding concept, we restrict ourselves to
three codes, but extension to several codes is straightforward. In
order to simplify the notation, consider the combination of per-
muter and encoder as a block code with input u and outputs xi,
i = 0, 1, 2, 3(x0 = u) and the corresponding received sequences
yi, i = 0, 1, 2, 3. The optimum bit decision metric on each bit is
(for data with uniform a priori probabilities)

Lk = log

∑
u:uk=1

P (y0|u)P (y1|u)P (y2|u)P (y3|u)∑
u:uk=0

P (y0|u)P (y1|u)P (y2|u)P (y3|u)
(10)

but in practice, we cannot compute Eq. (10) for large N because
the permutations π2, π3 imply that y2 and y3 are no longer simple
convolutional encodings of u. Suppose that we evaluate P (yi|u),
i = 0, 2, 3 in Eq. (10) using Bayes’ rule and using the following
approximation:

P (u|yi) ≈
N∏
k=1

P̃i(uk) (11)

Note that P (u|yi) is not separable in general. However, for i = 0,
P (u|y0) is separable; hence, Eq. (11) holds with equality. If such
an approximation, i.e., Eq. (11), can be obtained, we can use it
in Eq. (10) for i = 2 and i = 3 (by Bayes’ rule) to complete
the algorithm. A reasonable criterion for this approximation is to
choose

∏N

k=1
P̃i(uk) such that it minimizes the Kullback distance

or free energy [3, 16]. Define L̃ik by

P̃i(uk) =
eukL̃ik

1 + eL̃ik
(12)

where uk ∈ {0, 1}. Then the Kullback distance is given by

F (L̃i) =
∑
u

e

∑N

k=1
ukL̃ik∏N

k=1
(1 + eL̃ik)

log
e

∑N

k=1
ukL̃ik∏N

k=1
(1 + eL̃ik)P (u|yi)

(13)

Minimizing F (L̃i) involves forward and backward recursions anal-
ogous to the MAP decoding algorithm, but we have not attempted
this approach in this work. Instead of using Eq. (13) to ob-
tain {P̃i} or, equivalently, {L̃ik}, we use Eqs. (11) and (12) for
i = 0, 2, 3 (by Bayes’ rule) to express Eq. (10) as

Lk = f(y1, L̃0, L̃2, L̃3, k) + L̃0k + L̃2k + L̃3k (14)

where L̃0k = 2ρy0k (for binary modulation) and

f(y1, L̃0, L̃2, L̃3, k) = log

∑
u:uk=1

P (y1|u)
∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)∑
u:uk=0

P (y1|u)
∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)

(15)
We can use Eqs. (11) and (12) again, but this time for i = 0, 1, 3,
to express Eq. (10) as

Lk = f(y2, L̃0, L̃1, L̃3, k) + L̃0k + L̃1k + L̃3k (16)

and similarly,

Lk = f(y3, L̃0, L̃1, L̃2, k) + L̃0k + L̃1k + L̃2k (17)

A solution to Eqs. (14), (16), and (17) is

L̃1k = f(y1, L̃0, L̃2, L̃3, k)

L̃2k = f(y2, L̃0, L̃1, L̃3, k)

L̃3k = f(y3, L̃0, L̃1, L̃2, k) (18)

for

k

= 1

,

2

,

· · ·

, N

, provided that a solution to Eq. (18) does
indeed exist. The final decision is then based on

 L
k

 = ˜ L
0

k

 + ˜ L
1

k

 + ˜ L
2

k

 + ˜ L
3

k

 (19)

which is passed through a hard limiter with zero threshold. We
attempted to solve the nonlinear equations in Eq. (18) for ˜

L

1

, ˜

L

2

,
and ˜

L

3

by using the iterative procedure

˜

L

(

m

+1)
1

k

=

α

(

m

)
1

f

(

y

1

,

˜

L

0

,

˜

L

(

m

)
2

,

˜

L

(

m

)
3

, k

) (20)

for

k

= 1

,

2

,

· · ·

, N

, iterating on

m

. Similar recursions hold for
˜

L

(

m

)
2

k

and ˜

L

(

m

)
3

k

. The gain α
(m)
1 should be equal to one, but we

noticed experimentally that better convergence can be obtained
by optimizing this gain for each iteration, starting from a value
slightly less than one and increasing toward one with the itera-
tions, as is often done in simulated annealing methods. We start
the recursion with the initial condition2 L̃

(0)
1 = L̃

(0)
2 = L̃

(0)
3 = L̃0.

For the computation of f(·), we use the modified MAP algorithm
as described in [9] with permuters (direct and inverse) where
needed, as shown in Fig. 5. The MAP algorithm always starts
and ends at the all-zero state since we always terminate the trel-
lis as described in [9]. We assumed π1 = I identity; however, any
π1 can be used. The overall decoder is composed of block decoders

π2 π2
-1

DELAY

+

-

+

L2k

L1
(m)

~

L3
(m)

~

L2
(m+1)

~

y2

MAP 1
 or
SOVA 1

π1 π1
-1

DELAY

+

-

+

L1k

L3
(m)

~

L2
(m)~

L1
(m+1)

~

y1

π3 π3
-1

DELAY

+

-

+

L3k

L2
(m)

~

L1
(m)

~

L3
(m+1)

~

y3

Σ

•

•

•

•
•

•

DECODED BITS
L k

MAP 2
 or
SOVA 2

MAP 3
 or
SOVA 3

•

•

•

L0
~

Figure 5: Multiple Turbo Decoder Structure

connected as in Fig. 5, which can be implemented as a pipeline
or by feedback. In [11] we proposed an alternative version of the
above decoder which is more appropriate for use in turbo trellis
coded modulation, i.e., set L̃0 = 0 and consider y0 as part of y1.
If the systematic bits are distributed among encoders, we use the
same distribution for y0 among the MAP decoders.

2Note that the components of the L̃i’s corresponding to the tail bits,
i.e., L̃ik, for k = N + 1, · · · , N +M , are set to zero for all iterations.

At this point, further approximation for turbo decoding is pos-
sible if one term corresponding to a sequence u dominates other
terms in the summation in the numerator and denominator of
Eq. (15). Then the summations in Eq. (15) can be replaced
by “maximum” operations with the same indices, i.e., replacing∑

u:uk=i
with max

u:uk=i
for i = 0, 1. A similar approximation can

be used for L̃2k and L̃3k in Eq. (18). This suboptimum decoder
then corresponds to a turbo decoder that uses soft output Viterbi
(SOVA)-type decoders rather than MAP decoders. Further ap-
proximations, i.e., replacing

∑
with max can also be used in the

MAP algorithm.

VII. Multiple-Code Algorithm Applied to Two

Codes

For turbo codes with only two constituent codes, Eq. (20) reduces
to

L̃
(m+1)
1k = α

(m)
1 f(y1, L̃0, L̃

(m)
2 , k)

L̃
(m+1)
2k = α

(m)
2 f(y2, L̃0, L̃

(m)
1 , k)

for k = 1, 2, · · · , N and m = 1, 2, · · ·, where, for each iteration,
α

(m)
1 and α

(m)
2 can be optimized (simulated annealing) or set to 1

for simplicity. The decoding configuration for two codes, accord-
ing to the previous section, can be obtained from Fig. 5. In this
special case, since the paths in Fig. 5 are disjoint, the decoder
structure can be reduced to a serial mode structure if desired.

If we optimize α
(m)
1 and α

(m)
2 , our method for two codes is

similar to the decoding method proposed in [7], which requires
estimates of the variances of L̃1k and L̃2k for each iteration in the
presence of errors. In the method proposed in [15], the received
“systematic” observation was subtracted from L̃1k, which may
result in performance degradation. In [18] the method proposed
in [15] was used but the received “systematic” observation was
interleaved and provided to decoder 2. In [9], we argued that there
is no need to interleave the received “systematic” observation and
provide it to decoder 2, since L̃0k does this job. It seems that our
proposed method with α

(m)
1 and α

(m)
2 equal to 1 is simple and

achieves the same performance reported in [18] for rate 1/2 codes.

VIII. Performance and Simulation Results

The bit error rate performance of these codes was evaluated by
using transfer function bounds [6] [13]. In [13] it was shown
that transfer function bounds are very useful for signal-to-noise
ratios above the cutoff rate threshold and that they cannot ac-
curately predict performance in the region between cutoff rate
and capacity. In this region, the performance was computed by
simulation.

Figure. 6 shows the performance of turbo codes with m it-
erations and the following generators: For two K = 5 con-
stituent codes, (1, g1/g0, g2/g0) and (g1/g0), with g0 = (37)octal,
g1 = (33)octal and g2 = (25)octal; For three K = 3 codes,
(1, g1/g0) and (g1/g0) with g0 = (7)octal and g1 = (5)octal; For
three K = 4 codes, (1, g1/g0) and (g1/g0) with g0 = (17)octal and
g1 = (11)octal.

Further results at BER=10−5 were obtained for two con-
stituent codes with interleaving size N = 16384 as follows. For
a rate 1/2 turbo code using two codes, K = 2 (differential en-
coder) with (g1/g0) where g0 = (3)octal and g1 = (1)octal, and
K = 5 with (g1/g0) where g0 = (23)octal and g1 = (33)octal
the required bit SNR was 0.85 dB. This is an example where
the systematic bits are not transmitted. For rate 1/3, we used
two K = 5 codes, (1, g1/g0) and (g1/g0) with g0 = (23)octal and
g1 = (33)octal and obtained bit SNR= 0.25 dB. For rate 1/4, we

used two

K

= 5 codes with (1

, g

1

/g

0

, g

2

/g

0

) and (

g

1

/g

0

) with

g

0

= (23)

octal

,

g

1

= (33)

octal

and

g

2

= (25)

octal

and obtained
bit SNR = 0 dB. A fixed number of iterations m = 20 was used
for all cases. Many of these codes may actually require a smaller
number of iterations for BER=10

−

5

or below.
The simulation performance of other codes reported in this

paper is still in progress.

0.50.40.30.20.10.0-0.1-0.2
10 -5

10 -4

10 -3

10 -2

10 -1

B
E

R

N=4096
Code Rate=1/4

K=15, r=1/4
Galileo Code

Three K=3 Codes
m=20

Three K=4 Codes
m=20

Two K=5 Codes
(Different Rates)

m=10

Eb/No, dB

Figure 6: Performance of turbo codes

IX. Turbo Trellis Coded Modulation

A pragmatic approach for turbo codes with multilevel modula-
tion was proposed in [8]. Here we propose a different approach
that outperforms the results in [8] when M-QAM modulation is
used. A straightforward method to use turbo codes for multilevel
modulation is first to select a rate

b
b

+1

constituent code where the

outputs are mapped to a 2

b

+1

-level modulation based on Unger-
boeck’s set partitioning method (i.e., we can use Ungerboeck’s
codes with feedback). If MPSK modulation is used, for every

b

bits at the input of the turbo encoder we transmit two consecu-
tive 2

b

+1

PSK signals, one per each encoder output. This results
in a throughput of

b/

2 bits/sec/Hz. If M-QAM modulation is
used, we map the

b

+ 1 outputs of the first component code to
the 2

b

+1

in-phase levels (I-channel) of a 2

2

b

+2

-QAM signal set,
and the

b

+ 1 outputs of the second component code to the 2

b

+1

quadrature levels (Q-channel). The throughput of this system is

b

bits/sec/Hz.
First, we note that these methods require more levels of mod-

ulation than conventional TCM, which is not desirable in prac-
tice. Second, the input information sequences are used twice in
the output modulation symbols, which is also not desirable. An
obvious remedy is to puncture the output symbols of each trel-
lis code and select the puncturing pattern such that the output
symbols of the turbo code contain the input information only
once. If the output symbols of the first encoder is punctured,
for example as 101010

. . .

, the puncturing pattern of the second
trellis code is non-uniform and depends on the particular choice
of interleaver. Now for example, for 2

b

+1

-PSK a throughput

b

can be achieved. This method has two drawbacks, it complicates
the encoder and decoder and the reliability of punctured symbols
may not be reproducible at the decoder. A better remedy, for

b
b

+1

(

b

even), is to select the

b/

2 systematic outputs and puncture
the rest of the systematic outputs, but keep the parity bit of the

b
b

+1

code (Note that the

b
b

+1

may have been already obtained by
puncturing a rate 1/2 code). Then do the same to the second
constituent code but select only those systematic bits which were
punctured in the first encoder. This method requires at least
two interleavers: the first interleaver permutes the bits selected

by the first encoder and the second interleaver those punctured
by the first encoder. For MPSK (or MQAM) we can use 2

1+

b/

2

 PSK symbols (or 2
1+

b/

2 QAM symbols) per encoder and achieve

throughput b/2. For M-QAM we can also use 21+b/2 levels in
the I-channel and 21+b/2 levels in the Q-channel, and achieve a
throughput of b bits/sec/Hz. These methods are equivalent to a
multi-dimensional trellis coded modulation scheme (in this case,
two multi-level symbols per branch) which uses 2b/2×21+b/2 sym-
bols per branch, where the first symbol in the branch (which only
depends on uncoded information) is punctured. Now, with these
methods the reliability of the punctured symbols is reproducible
at the decoder. Obviously, the constituent codes for a given mod-
ulation should be redesigned based on the Euclidean distance. In
this paper we give one example for b = 2 with 16QAM modula-
tion where for simplicity we can use the 2/3 codes in Table 1 with
Gray code mapping. Note that this may result in suboptimum
constituent codes for multi-level modulation. The turbo encoder
with 16QAM and two clock cycle trellis termination is shown in
Fig. 7. The BER performance of this code with the turbo de-
coding structure for two codes discussed in Sec. VI is given in
Fig. 8. For permutations π1 and π2 we used S-random permu-
tations with S=40 and S=32 with block size of 16384 bits. For
8PSK we used the best 16-state rate 4/5 code given in Sec. V to
achieve throughput 2. More examples for 8PSK and 16QAM are
given in [14].

+ + +D D

u2

u1

+

+

•
••

••
•

A

A B

B

+D x0 +D

+ + +D D

+

+

•
••

••
•

A

A B

B

+D x0 +D

•
•

π2 π1 16
QAM

Figure 7: Turbo Trellis Coded Modulation, 16QAM, 2
bits/sec/Hz.

X. Conclusions

In this paper we have shown that powerful turbo codes can be
obtained if multiple constituent codes are used. We proposed an
iterative decoding method for multiple turbo codes by approxi-
mating the optimum bit decision rule. Construction of a partially
random interleaver was discussed. A probabilistic argument was
used to show the importance of maximizing the minimum output
weight of constituent codes due to weight-2 input sequences in
the design of turbo codes. We obtained an upper bound on this
minimum output weight for rate b/n constituent codes. We found
the best rate 2/3 ,1/3 and 16-state rate 4/5 constituent codes that
can be used in the design of multiple turbo codes. We proposed
new schemes that can be used for power and bandwidth efficient
turbo trellis coded modulation.

XI. acknowledgments

The authors are grateful to S. Dolinar for his contributions to

3.23.13.02.92.82.72.62.5
10-5

10-4

10-3

10-2

10-1

Eb/N0, dB

B
E

R

m=4

m=5

m=6

m=9

Figure 8: BER Performance of Turbo Trellis Coded Modu-
lation, 16QAM, 2 bits/sec/Hz.

random interleavers and to R. J. McEliece for helpful comments.

References

[1] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate,”

IEEE Trans.
Inform. Theory

, vol. IT-20, pp. 284–287, 1974.

[2] G. Battail, C. Berrou, and A. Glavieux, “Pseudo-Random Recur-
sive Convolutional Coding for Near-Capacity Performance,”

Comm.
Theory Mini-Conference, GLOBECOM ’93

, Houston, Texas, De-
cember 1993.

[3] G. Battail and R. Sfez, “Suboptimum Decoding Using the Kullback
Principle,”

Lecture Notes in Computer Science

, vol. 313, pp. 93–
101, 1988.

[4] S. Benedetto, “Unveiling Turbo Codes”, IEEE Communication
Theory Workshop, April 23-26, 1995, Santa Cruz, CA

[5] S. Benedetto and G. Montorsi, “Design of Parallel Concatenated
Convolutional Codes”, submitted to IEEE Transactions on Com-
munications.

[6] S. Benedetto and G. Montorsi, “Performance evaluation of turbo-
codes”, Electronics Letters, Feb. 2, 1995, Vol. 31, No. 3, pp. 163-165.

[7] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon
Limit Error-Correcting Coding: Turbo Codes,”

Proc. 1993 IEEE In-
ternational Conference on Communications

, Geneva, Switzerland,
pp. 1064–1070, May 1993.

[8] S. LeGoff, A. Glavieux, and C. Berrou, “Turbo Codes and High
Spectral Efficiency Modulation”,

Proceedings of IEEE ICC’94

, May
1-5, 1994, New Orleans, LA.

[9] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Commu-
nications”, JPL TDA Progress Report 42-120, Feb. 15, 1995.

[10] D. Divsalar and F. Pollara, “Multiple Turbo Codes for Deep-
Space Communications”, JPL TDA Progress Report 42-121, May
15, 1995.

[11] D. Divsalar and F. Pollara, “Turbo Codes for PCS Applications,”

Proceedings of IEEE ICC’95

, Seattle, Washington, June 1995.

[12] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Commu-
nications”, IEEE Communication Theory Workshop, April 23-26,
1995, Santa Cruz, CA

[13] D. Divsalar, S. Dolinar, R.J. McEliece, F. Pollara. “Transfer Func-
tion Bounds on the Performance of Turbo Codes”, MILCOM 95,
Nov. 5-8, 1995, San Diego, CA.

[14] D. Divsalar and F. Pollara, “On the Design of Turbo Codes”, JPL
TDA Progress Report 42-123, Nov 15, 1995 (To be published).

[15] J. Hagenauer and P. Robertson, “Iterative (Turbo) Decoding of
Systematic Convolutional Codes With the MAP and SOVA Al-
gorithms,”

Proc. of the ITG Conference on Source and Channel
Coding

, Frankfurt, Germany, October 1994.

[16] M. Moher, “Decoding Via Cross-Entropy Minimization,”

Proceed-
ings GLOBECOM ’93

, pp. 809–813, December 1993.

[17] A.S. Barbulescu and S.S. Pietrobon, “Terminating the Trellis of
Turbo-Codes in the Same State”, Electronics Letters, Vol. 31, no.
1, pp. 22-23, Jan. 1995.

[18] P. Robertson, “Illuminating the Structure of Code and Decoder of
Parallel Concatenated Recursive Systematic (Turbo) Codes,

Pro-
ceedings GLOBECOM ’94

, San Francisco, California, pp. 1298–
1303, December 1994.

